63 research outputs found

    Large Fatty Acid-Derived Aβ42 Oligomers Form Ring-Like Assemblies

    Get PDF
    As the primary toxic species in the etiology of Alzheimer disease (AD) are low molecular weight oligomers of Aβ, it is crucial to understand the structure of Aβ oligomers for gaining molecular insights into AD pathology. We have earlier demonstrated that in the presence of fatty acids, Aβ42 peptides assemble as 12-24mer oligomers. These Large Fatty Acid-derived Oligomers (LFAOs) exist predominantly as 12mers at low and as 24mers at high concentrations. The 12mers are more neurotoxic than the 24mers and undergo self-replication, while the latter propagate to morphologically distinct fibrils with succinct pathological consequences. In order to glean into their functional differences and similarities, we have determined their structures in greater detail by combining molecular dynamic simulations with biophysical measurements. We conjecture that the LFAO are made of Aβ units in an S-shaped conformation, with the 12mers forming a double-layered hexamer ring (6 × 2) while the structure of 24mers is a double-layered dodecamer ring (12 × 2). A closer inspection of the (6 × 2) and (12 × 2) structures reveals a concentration and pH dependent molecular reorganization in the assembly of 12 to 24mers, which seems to be the underlying mechanism for the observed biophysical and cellular properties of LFAOs

    Biophysical Characteristics of Lipid-Induced Aβ Oligomers Correlate to Distinctive Phenotypes In Transgenic Mice

    Get PDF
    Alzheimer\u27s disease (AD) is a progressive neurodegenerative disorder that affects cognition and memory. Recent advances have helped identify many clinical sub-types in AD. Mounting evidence point toward structural polymorphism among fibrillar aggregates of amyloid-β (Aβ) to being responsible for the phenotypes and clinical manifestations. In the emerging paradigm of polymorphism and prion-like propagation of aggregates in AD, the role of low molecular weight soluble oligomers, which are long known to be the primary toxic agents, in effecting phenotypes remains inconspicuous. In this study, we present the characterization of three soluble oligomers of Aβ42, namely 14LPOs, 16LPOs, and GM1Os with discreet biophysical and biochemical properties generated using lysophosphatidyl glycerols and GM1 gangliosides. The results indicate that the oligomers share some biophysical similarities but display distinctive differences with GM1Os. Unlike the other two, GM1Os were observed to be complexed with the lipid upon isolation. It also differs mainly in detection by conformation-sensitive dyes and conformation-specific antibodies, temperature and enzymatic stability, and in the ability to propagate morphologically-distinct fibrils. GM1Os also show distinguishable biochemical behavior with pronounced neuronal toxicity. Furthermore, all the oligomers induce cerebral amyloid angiopathy (CAA) and plaque burden in transgenic AD mice, which seems to be a consistent feature among all lipid-derived oligomers, but 16LPOs and GM1Os displayed significantly higher effect than the others. These results establish a correlation between molecular features of Aβ42 oligomers and their distinguishable effects in transgenic AD mice attuned by lipid characteristics, and therefore help bridge the knowledge gap in understanding how oligomer conformers could elicit AD phenotypes

    Gynaecologists estimate and experience laparoscopic hysterectomy as more difficult compared with abdominal hysterectomy

    Get PDF
    The level of difficulty of various types of hysterectomy differs and may influence the choice of either approach. When surgeons consider one specific approach to hysterectomy as more difficult, they may be reluctant to perform this type of hysterectomy. The main objective of this study was to investigate the potential different levels of difficulty for laparoscopic and abdominal hysterectomy. Furthermore, the accuracy of estimating the level of difficulty was examined. In a randomized controlled trial between laparoscopic hysterectomy (LH) and abdominal hysterectomy (AH), gynaecologists were asked to record the preoperatively estimated and postoperatively experienced level of difficulty on a Visual Analogue Scale (VAS). Differences between LH and AH were examined and the correlation between the estimated uterine weight on bimanual palpation and the actual uterine weight was calculated. A difference on the VAS of three points or more (ΔVAS ≥ 3) was considered clinically relevant. In 72 out of 76 cases, both VAS scores were recorded. LH was estimated and experienced as significantly more difficult as compared with AH. In 13 (18%) cases, ΔVAS was ≥3, equally distributed between LH (n = 6) and AH (n = 7). Eleven of these 13 cases had a positive ΔVAS ≥3, meaning that surgery was experienced as more difficult than it was estimated. Surgeon’s estimation of uterine size correlated well with the actual uterine weight. LH is considered as more difficult than AH, which might be a reason for its slow implementation. In a large proportion of cases, gynaecologists seem to be able to estimate the level of difficulty of hysterectomy accurately

    The Hemopoietic Stem Cell Niche Versus the Microenvironment of the Multiple Myeloma-Tumor Initiating Cell

    Get PDF
    Multiple myeloma cells are reminiscent of hemopoietic stem cells in their strict dependence upon the bone marrow microenvironment. However, from all other points of view, multiple myeloma cells differ markedly from stem cells. The cells possess a mature phenotype and secrete antibodies, and have thus made the whole journey to maturity, while maintaining a tumor phenotype. Not much credence was given to the possibility that the bulk of plasma-like multiple myeloma tumor cells is generated from tumor-initiating cells. Although interleukin-6 is a major contributor to the formation of the tumor’s microenvironment in multiple myeloma, it is not a major factor within hemopoietic stem cell niches. The bone marrow niche for myeloma cells includes the activity of inflammatory cytokines released through osteoclastogenesis. These permit maintenance of myeloma cells within the bone marrow. In contrast, osteoclastogenesis constitutes a signal that drives hemopoietic stem cells away from their bone marrow niches. The properties of the bone marrow microenvironment, which supports myeloma cell maintenance and proliferation, is therefore markedly different from the characteristics of the hemopoietic stem cell niche. Thus, multiple myeloma presents an example of a hemopoietic tumor microenvironment that does not resemble the corresponding stem cell renewal niche

    Defining an amyloid link Between Parkinson’s disease and melanoma

    No full text

    Cause and Consequence of Aβ: Lipid Interactions in Alzheimer Disease Pathogenesis

    Get PDF
    Self-templating propagation of protein aggregate conformations is increasingly becoming a significant factor in many neurological diseases. In Alzheimer disease (AD), intrinsically disordered amyloid-β (Aβ) peptides undergo aggregation that is sensitive to environmental conditions. High-molecular weight aggregates of Aβ that form insoluble fibrils are deposited as senile plaques in AD brains. However, low-molecular weight aggregates called soluble oligomers are known to be the primary toxic agents responsible for neuronal dysfunction. The aggregation process is highly stochastic involving both homotypic (Aβ-Aβ) and heterotypic (Aβ with interacting partners) interactions. Two of the important members of interacting partners are membrane lipids and surfactants, to which Aβ shows a perpetual association. Aβ–membrane interactions have been widely investigated for more than two decades, and this research has provided a wealth of information. Although this has greatly enriched our understanding, the objective of this review is to consolidate the information from the literature that collectively showcases the unique phenomenon of lipid-mediated Aβ oligomer generation, which has largely remained inconspicuous. This is especially important because Aβ aggregate “strains” are increasingly becoming relevant in light of the correlations between the structure of aggregates and AD phenotypes. Here, we will focus on aspects of Aβ-lipid interactions specifically from the context of how lipid modulation generates a wide variety of biophysically and biochemically distinct oligomer sub-types. This, we believe, will refocus our thinking on the influence of lipids and open new approaches in delineating the mechanisms of AD pathogenesis. This article is part of a Special Issue entitled: Protein Aggregation and Misfolding at the Cell Membrane Interface edited by Ayyalusamy Ramamoorthy
    corecore